CHAPITRE 22

Sous-espaces affines

Sommaire

I	Sous-espaces affines d'un espace vectoriel		1
	I.1	Translations	1
	I.2	Sous-espaces affines	1
	I.3	Sous-espaces affines dans \mathbb{R}^3	3
	I.4	Exemples de sous-espaces affines	4
	I.5	Cas des hyperplans affine	5

Sous-espaces affines d'un espace vectoriel Ι

On travaillera dans le K-e.v. E.

Translations I.1

Définition 22.1

On appelle translation de vecteur a l'application : $\tau_a \begin{cases} E \longrightarrow E \\ x \longrightarrow x + a \end{cases}$

$$\tau_a \begin{cases} E \longrightarrow E \\ x \longrightarrow x + a \end{cases}$$

Remarque 22.2. τ_a est une application linéaire ssi a=0

Proposition 22.3

$$\forall (a,b) \in E^2$$
:

1.
$$\tau_a \circ \tau_b = \tau_{a+b}$$
;

2.
$$(\tau_a)^{-1} = \tau_{-a}$$
.

Sous-espaces affines **I.2**

Définition 22.4

On note a + F l'ensemble :

$$a + F = \{a + x, x \in F\} = \tau_a(F)$$

où $a \in E$ et F est un s.e.v.

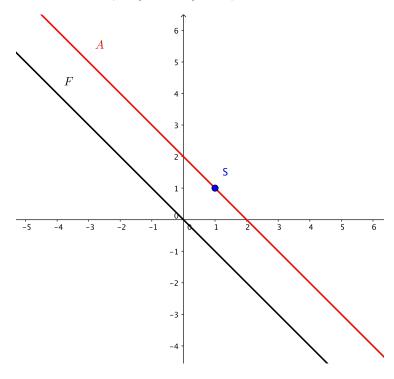
MPSI 1/7 Remarque 22.5.

1.
$$\{a\} \subset a + F$$

$$2. \ x \in a + F \iff x - a \in F$$

Exemple 22.6

A = S + F avec S = (1,1) et $F = \{(x,y), x + y = 0\}.$



Lemme 22.7

 $a + F = a' + F' \iff F = F' \text{ et } a - a' \in F$

Définition 22.8: sous-espace affine-

- Une partie \mathcal{F} de E est un **sous-espace affine** de E si on peut trouver $a \in E$ et un s.e.v. F tel que $\mathcal{F} = a + F$.
- Une partie \mathcal{F} est appelée s.e.a. passant par a et dirigée par F si on a : $x \in \mathcal{F} \iff x a \in F$.
- $\bullet \ \ F$ est appelée la direction de $\mathcal{F}.$

Définition 22.9: Droite affine

Une droite affine est un sous-espace affine dirigé par une droite vectorielle.

Remarque 22.10.

Sur \mathbb{R}^n , on retrouve que $B = A + \vec{u}$ si et seulement si $\overrightarrow{AB} = \vec{u}$.

Remarque 22.11. Un singleton est un sous-espace affine avec $F = \{0\}$.

Exemple 22.12

L'ensemble $\{f \in \mathcal{C}([a,b],\mathbb{R}), \int_a^b f(t) dt = 1\}$ est un sous -espace affine.

Proposition 22.13

Si \mathcal{F} est un s.e.a. de E passant par a de direction F alors pour tout $a' \in \mathcal{F}$, $\mathcal{F} = a' + F$.

Proposition 22.14

Soit \mathcal{F} et \mathcal{G} deux s.e.a. de direction F et G respectivement, alors

- 1. soit $\mathcal{F} \cap \mathcal{G} = \emptyset$;
- 2. $\mathcal{F} \cap \mathcal{G}$ est un s.e.a. de direction $F \cap G$.

I.3 Sous-espaces affines dans \mathbb{R}^3

Proposition 22.15

Les sous-espaces vectoriels de \mathbb{R}^3 sont :

- {0};
- ullet Les droites vectorielles, c'est-à-dire géométriquement les droites passant par (0,0,0);
- les plans vectoriel cad passant par (0,0,0), sous-espaces engendrés par deux vecteurs non colinéaires;
- \mathbb{R}^3 .

Proposition 22.16

Les sous-espaces affines de \mathbb{R}^3 sont :

- $\{x\}$ quel que soit $x \in \mathbb{R}^3$;
- les droites affines;
- les plans (sous-espace affine de direction un plan vectoriel);
- \mathbb{R}^3 .

Exemple 22.17

$$A = \{(x, y, z), z = a\} = (0, 0, a) + \{(x, y, z), z = 0\}$$

Définition 22.18: Hyperplan affine

Un sous-espace affine de direction H est un **hyperplan affine** si H est un hyperplan.

Exemple 22.19

L'ensemble $\{(x,y,z)\in\mathbb{R}^3\,|\,x+y+z=4\}$ est un hyperplan affine de direction $\{(x,y,z)\in\mathbb{R}^3\,|\,x+y+z=4\}$ $\mathbb{R}^3 \mid x + y + z = 0$.

Exemple 22.20

L'ensemble $\{f \in \mathcal{C}([a,b],\mathbb{R}), \int_a^b f(t) dt = 1\}$ est un hyperplan affine de direction $\{f \in \mathcal{C}([a,b],\mathbb{R}), f(t) \}$ $\mathfrak{C}([a,b],\mathbb{R}), \int_a^b f(t) dt = 0$.

Exemples de sous-espaces affines

Soit E et F deux \mathbb{K} -e.v.

Proposition 22.21

Soit $u \in \mathcal{L}(E, F)$ et $b \in F$ alors l'ensemble :

$${x \in E, u(x) = b}$$

est soit vide, soit un sous-espace affine de *E*.

Remarque 22.22. Ce résultat a déjà été croisé à plusieurs reprises, de plus, la décomposition de l'ensemble des solutions en solution particulière + { solutions de l'équation homogène } ne nécessite pas forcément un espace vectoriel mais uniquement la linéarité de u (par exemple pour certaines équations diophantiennes).

Équations différentielles linéaires

Exemple 22.23

Soit a et f deux fonctions continue sur I un intervalle de \mathbb{R} . L'ensemble des solutions sur I de l'équation:

$$y' + a(x)y = f$$

y' + a(x)y = f est un sous-espace affine de l'ensemble des fonctions dérivables de I dans \mathbb{K} .

Systèmes linéaires

Exemple 22.24

L'ensemble des p-uplet $(x_1, x_2, ..., x_p) \in \mathbb{K}^p$ solution de

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + \dots + a_{1p}x_p = b_1 \\ \vdots & \vdots \\ \vdots & \vdots \\ a_{n1}x_1 + a_{12}x_2 + \dots + \dots + a_{np}x_p = b_n \end{cases}$$

est soit vide soit un sous-espace affine de \mathbb{K}^p .

Interpolation polynomiale

Soit $x_1,...,x_n \in \mathbb{K}$ 2 à 2 distincts, et $y_1,...,y_n \in \mathbb{K}$ alors l'ensemble des polynômes vérifiant :

$$\begin{cases} P(x_1) = y_1 \\ \vdots \\ P(x_n) = y_n \end{cases}$$

est un sous-espace affine de $\mathbb{K}[X]$.

I.5 Cas des hyperplans affine

On rapporte E à un repère $\mathbb{R} = (A, e_1, e_2, ..., e_n)$, on a alors $M = A + \sum_{i=1}^n \tilde{m}_i e_i$ avec $(\tilde{m}_1, \tilde{m}_2, \tilde{m}_n)$ les coordonnées de M dans le repère \mathbb{R} , c'est-à-dire les coordonnées de \overline{AM} dans la base $(e_1, e_2, ..., e_n)$.

Proposition 22.25

1. Soit \mathcal{H} un hyperplan affine de E. Il existe $(a_1, a_2, ..., a_n) \in \mathbb{K}^n \setminus \{(0, 0, ..., 0)\}$ et $b \in \mathbb{K}$ tel que :

$$\forall M \in E, \quad M \in \mathcal{H} \iff \sum_{i=1}^{n} a_i \tilde{m}_i = b$$

On dit alors que $\sum_{i=1}^{n} a_i \tilde{m}_i = b$ est l'équation de l'hyperplan affine dans le repère \Re .

- 2. Pour tout $(a_1, a_2, ..., a_n) \in \mathbb{K}^n \setminus \{(0, ..., 0)\}$ et $b \in \mathbb{K}$ l'équation $\sum_{i=1}^n a_i \tilde{m}_i = b$ représente l'équation d'un hyperplan affine dirigé par l'hyperplan d'équation $\sum_{i=1}^n a_i \tilde{m}_i = 0$ dans la base $(e_i)_{1 \le i \le n}$.
- 3. Deux équations $\sum_{i=1}^n a_i \tilde{m}_i = \alpha$ et $\sum_{i=1}^n b_i \tilde{m}_i = \beta$ avec $(a_i)_{i \in [\![1,n]\!]} \in \mathbb{K}^n$ et $(b_i)_{i \in [\![1,n]\!]} \in \mathbb{K}^n$ et $(\alpha,\beta) \in \mathbb{K}^2$ représente le même hyperplan affine si et seulement si il existe $\lambda \in \mathbb{K}^*$ tel que pour tout $i \in [\![1,n]\!]$, $a_i = \lambda b_i$ et $\alpha = \lambda \beta$.

Preuve

1. Soit \mathcal{H} un hyperplan affine, alors il existe $h \in \mathcal{H}$ et H un hyperplan tel que $\mathcal{H} = h + H$. Soit $\sum_{i=1}^{n} a_i \tilde{x}_i = 0$ l'équation de cet hyperplan.

$$M \in \mathcal{H} \iff M - h \in H$$

$$\iff \sum_{i=1}^{n} a_i (\tilde{m}_i - \tilde{h}_i) = 0$$

$$\iff \sum_{i=1}^{n} a_i \tilde{m}_i = \sum_{i=1}^{n} a_i \tilde{h}_i$$

$$\iff \sum_{i=1}^{n} a_i \tilde{m}_i = b$$

avec $b = \sum_{i=1}^n a_i \tilde{h}_i$, $(\tilde{m}_1, ..., \tilde{m}_n)$ les coordonnées de M dans le repère \Re et $(\tilde{h}_1, ..., \tilde{h}_n)$ ceux de h.

Р

2. Soit $\phi: (\tilde{x}_1, ..., \tilde{x}_n) \to \sum_{i=1}^n a_i \tilde{x}_i$, la forme linéaire de E, comme elle est non nulle, il existe $h \in E$ tel que $\phi(h) = b$.

$$\sum_{i=1}^{n} a_i \tilde{x}_i = b \iff \phi(x) = b$$

$$\iff \phi(x) = \phi(h)$$

$$\iff \phi(x - h) = 0$$

$$\iff x - h \in \text{Ker}(\phi)$$

$$\iff x \in h + \text{Ker}(\phi)$$

Les solutions de cette équations sont donc un hyperplan affine.

3. On sait que $h + H = h' + H' \Longrightarrow H = H'$ et $h' \in H$, par conséquent pour que deux équations $\sum_{i=1}^n a_i \tilde{m}_i = \alpha$ et $\sum_{i=1}^n b_i \tilde{m}_i = \beta$ aient le même ensemble solution il faut que $\sum_{i=1}^n a_i \tilde{m}_i = 0$ et $\sum_{i=1}^n b_i \tilde{m}_i = 0$ aient le même ensemble solution d'après la proposition sur les équations des hyperplans vectoriels il existe $\lambda \in \mathbb{K}^*$ tel que $(a_1, ..., a_n) = \lambda(b_1, ...b_n)$. Il en suit clairement que $\alpha = \lambda \beta$. La réciproque est évidente.

Définition 22.26: hyperplan parallèle/confondu

Deux hyperplans affine sont **parallèles** si ils ont comme direction le même hyperplan vectoriel. Ils sont **confondus** si ce sont les mêmes.

Corollaire 22.27

si $(a_1, a_2, a_3..., a_n) = \lambda(b_1, b_2, ..., b_n)$ mais $\alpha \neq \lambda \beta$ $(\lambda \neq 0)$ on a que les deux hyperplans sont parallèles mais non confondus.

Exemple 22.28

Р

Les hyperplan affines $\mathcal{H}_1=\{(x,y,z)\in\mathbb{R}^3,\,x+y+z=-3\}$ (en rouge), $\mathcal{H}_2=\{(x,y,z)\in\mathbb{R}^3,\,x+y+z=1\}$ (en vert) et $\mathcal{H}_3=\{(x,y,z)\in\mathbb{R}^3,\,x+y+z=4\}$ (en bleu) sont parallèles par contre l'hyperplan $\mathcal{H}_4=\{(x,y,z)\in\mathbb{R}^3,\,z=0\}$ ici en gris, n'a pas la même direction.

